Adenoviral Vector-based H5N1 Influenza Vaccines

Suresh Mittal
Department of Comparative Pathobiology
Purdue University
West Lafayette, IN
Need for H5N1 influenza vaccine?

- H5N1 viruses detected in birds in 62 countries
- 12 countries reported over 300 human cases with approx. 60% fatality due to H5N1 virus infection
- Virus has drifted into 3 different clades
 - A/VN/1203/04 = Clade 1
 - A/Indo/05/05 = Clade 2.1
- Potential for anti-viral resistance
- Currently licensed trivalent seasonal vaccines consisting of H1N1, H3N2, and B components do not provide protection against H5N1 viruses
Vaccine strategies

Traditional Approaches (split, or whole-virus inactivated vaccines)
- Need strong adjuvants for dose sparing

Alternative Approaches
- Reassortant virus vaccines
- Cold-adapted vaccines
- Viral vectored vaccines
- Virus-like particles (VLPs)
- Plant or insect cell-based subunit vaccines
- DNA vaccines
Advantages of adenoviral vectors as a vaccine delivery system

- Non-pathogenic
- Grown to high titers
- Availability of certified cell lines
- Availability of technology for large scale purification
- No integration into the host genome
- Targets macrophages and DCs
- Induce both humoral and CMI responses
- Effectively delivered by mucosal or parental route
- Egg-independent approach
- No need for high containment
Protection of HAd-H5HA immunized mice against antigenically distinct H5N1 virus strains

Groups
(HAd-H5HA (10^8 pfu i.m.))
(HAd-H5HA (10^8 pfu i.n.))
(HAd-ΔE1E3 (10^8 pfu i.m.))
rH5HA + Alum (i.m.)

Humoral response
Microneutralization Assay
Hemagglutination Inhibition

Cell-based response
HA-epitope pentamer staining
T cell ELIspots

Virus-neutralizing antibody response against homologous and heterologous H5N1 strains in mice immunized with HAd-H5HA vaccine
Conservation of immunodominant epitope (HA 518) in HA among influenza viruses

<table>
<thead>
<tr>
<th>Strain of influenza virus</th>
<th>HA and NA type</th>
<th>Immunodominant Epitope (K<sub>d</sub>)</th>
<th>Binding score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/PR/8/34</td>
<td>H1N1</td>
<td>IYSTVASSL</td>
<td>30</td>
</tr>
<tr>
<td>A/HK/156/97</td>
<td>H5N1</td>
<td>IYSTVASSL</td>
<td>30</td>
</tr>
<tr>
<td>A/HK/213/03</td>
<td>H5N1</td>
<td>IYSTVASSL</td>
<td>30</td>
</tr>
<tr>
<td>A/VN/1203/04</td>
<td>H5N1</td>
<td>IYSTVASSL</td>
<td>30</td>
</tr>
<tr>
<td>A/HK/1073/99</td>
<td>H9N2</td>
<td>IYSTVASSL</td>
<td>30</td>
</tr>
<tr>
<td>A/NL/219/03</td>
<td>H7N7</td>
<td>WFSFGASCFF</td>
<td>8</td>
</tr>
</tbody>
</table>
Frequency of HA 518 epitope-specific CD8 T cells
Induction of MHC class I-restricted cellular immune response as determined by IFN-γ secretion in HAd-H5HA-immunized mice
Morbidity and mortality against lethal challenge in mice immunized with an HAd-H5HA vaccine

[Graphs showing data for different categories and time points]
Virus titers in lungs following challenge of mice immunized with an HAd-H5HA vaccine

![Graph showing lung viral titers EID (log_{10}/mL)](image)
“Our findings highlight the potential of an Ad-vector-based delivery system, which is both egg-independent and adjuvant-independent and offers stockpiling options for the development of a pandemic influenza vaccine.”

See Articles page 475
Longevity of immune responses in mice immunized with HAd-H5HA vaccine

Groups
- HAd-H5HA (10^8 pfu i.m.)
- HAd-H5HA (10^8 pfu i.n.)
- HAd-ΔE1E3 (10^8 pfu i.m.)

Humoral response
- Microneutralization Assay
- Hemagglutination Inhibition

Cell-based response
- HA-epitope pentamer staining
- T cell ELIspots
Longevity of humoral immune responses induced by HAdH5HA vaccine

HI titers

Neutralizing Antibody titers

Weeks post-boost

i.m.
i.n.
empty vector

empty vector

4 wks
55 wks
Longevity of HA 518 epitope-specific CD8+ T-cells at 4 weeks and 55 weeks post-boost with HAd-H5HA vaccine

% epitope-specific CD8+ T cells per total lymphocytes

* p<.001
Morbidity of mice vaccinated with HAd-H5HA (4 weeks and 55 weeks post-boost) and challenged with 50 LD$_{50}$ A/HK/483/97.
Conclusion

- The humoral and cell-mediated immune responses induced by HAd-H5HA vaccine lasts at least for 1 year.
- Immunized animals were protected from morbidity and mortality following challenge.
Development of broadly protective pre-pandemic influenza vaccine

- Adenoviral Vectors constructs
 - HA = VN/1203
 - HA = Indo/05
 - NP = VN/1203
 - HA = VN/1203 + Indo/05
 - HA (Indo/05) + NP
- HAd-ΔE1E3
- Viral controls (i.p.)
 - Clade 1 = ΔHAVN/1203xA/PR/8
 - Clade 2 = ΔHAIIndo05xA/PR/8

Humoral response
- Microneutralization Assay
- Hemagglutination Inhibition

Cell-based response
- HA & NP-epitope pentamer staining
- T cell ELIspots

Prime 4 wks 4 wks Boost
Bleed
Challenge Spleen collection
Neutralizing antibodies (pooled sera) against VN/1203 and Indo/05 in immunized mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Route</th>
<th>VN/1203</th>
<th>Indo/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAd 1203 HA</td>
<td>i.m.</td>
<td>320</td>
<td>10</td>
</tr>
<tr>
<td>HAd Indo 05 HA</td>
<td>i.m.</td>
<td>10</td>
<td>320</td>
</tr>
<tr>
<td>HAd 1203 HA + Indo 05 HA</td>
<td>i.m.</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>HAd Indo 05 HA + NP</td>
<td>i.m.</td>
<td>10</td>
<td>640</td>
</tr>
<tr>
<td>HAd NP</td>
<td>i.m.</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Empty Vector</td>
<td>i.m.</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>△HAVN/1203xA/PR/8(Clade 1)</td>
<td>i.p.</td>
<td>320</td>
<td>80</td>
</tr>
<tr>
<td>△HAIndo05xA/PR/8(Clade 2)</td>
<td>i.p.</td>
<td>10</td>
<td>640</td>
</tr>
</tbody>
</table>
Induction of HA 518 and NP 147 epitope-specific CD8+ T cells in HAd-H5HA immunized mice
Viral lung titers of mice challenged with Clade 1 and Clade 2 reassortant virus (100 MID$_{50}$) after HAd-H5HA immunization

<table>
<thead>
<tr>
<th>Group</th>
<th>VN/1203</th>
<th>Indo/05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log$_{10}$</td>
<td>S.D.</td>
</tr>
<tr>
<td>HAd 1203 HA</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>HAd Indo 05 HA</td>
<td>1.7</td>
<td>0.5</td>
</tr>
<tr>
<td>HAd 1203 HA + Indo 05 HA</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>HAd Indo 05 HA + NP</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>HAd NP</td>
<td>3.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Empty Vector</td>
<td>5.3*</td>
<td>1.4</td>
</tr>
<tr>
<td>ΔHAVN/1203xA/PR/8(Clade 1)</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>ΔHAVIndo05xA/PR/8(Clade 2)</td>
<td>1.5</td>
<td>0</td>
</tr>
</tbody>
</table>

* p<0.05
Conclusions

- Inclusion of recent H5HA in HAd constructs elicits immune responses against currently circulating H5N1 viruses.
- Addition of NP in the HAd vaccine broadens the immune response compared to HAd-H5HA alone.
Concerns about human adenoviral vector system?

- Is it fair to apply drawbacks of adenoviral vector-based gene therapy approaches directly to vaccine applications?

- Impact of pre-existing vector immunity on efficacy of adenoviral vector-based vaccines.
Circumvention of exceptionally high levels of vector immunity by BAd vectored vaccine

Naïve Groups
- BAd-H5HA (10^8 pfu i.m.)
- HAd-H5HA (10^8 pfu i.m.)
- HAd-ΔE1E3 (10^8 pfu i.m.)

HAd5-primed Group
- BAd-H5HA (10^8 pfu i.m.)

Humoral response
- Hemagglutination Inhibition

Cell-based response
- HA-epitope pentamer staining
- T cell ELIspots
HAd5 neutralizing antibody titers in naïve or HAd5-primed (2 X) mice before immunization.
Induction of HA-specific humoral immune response in naïve or HAd5-primed mice immunized with BAd-H5HA vaccine
Frequency of HA 518 epitope-specific CD8 T cells in naïve or HAd5-primed mice immunized with BAd-H5HA vaccine
Morbidity and mortality against lethal challenge with homologous H5N1 virus (HK/483/97) in mice immunized with HAd-H5HA vaccine

(A)

(B)
Conclusion

Exceptionally high levels of vector immunity do not adversely affect protective immune responses induced by BAd vector-based H5N1 vaccine
Acknowledgements

- National Institute of Health Research and Development, Ministry of Health, Indonesia
 - Dr. Triono Soendoro and Dr. Endang Sedyaningsih
- Ministry of Health, Vietnam
- WHO Global Influenza Program Surveillance Network
Purdue University

D. Bangari
E. Clark
L. Jayashankar
M. McDermott
A. Sharma
N. Singh
Y. Singh
A. Pandey
X. Li
S. Vemulla
S. Mittal

CDC

M. Hoelscher
S. Garg
J. Belser
X. Lu
I. Stephenson
R. Bright
J. Achenbach
K. Szretter
V. Veguilla
Y. Matsuoka
J. Katz
R. Donis
S. Sambhara

Funding: NIAID and NVPO