The Cotton Rat Model of Respiratory Viral Infections Pathogenesis and Immunity

Marina S. Boukhvalova, Ph.D.
Virion Systems, Inc.
Rockville, MD
Sigmodon hispidus

- Member of the family *cricidae*
- In many regions of southern United States most abundant wild rodent
- Natural host of several viruses (*i.e.*, Hantavirus, arenaviruses)

Advantages as an animal model:

- Much more permissive for most viruses than mice (for RSV more than 100 fold)
- Inbred
- Reagents are available
Development of Cotton Rat Commercial Reagents

- cDNA for >290 cotton rat genes
- Sequences are immediately deposited in GenBank, none are being patented
- R&D Systems, Inc. expresses gene product, produces antibody
- 71 cotton rat reagents in the current R&D Systems online catalog
Cotton Rat Genes and Reagents
(Selected from a total of 290 cDNAs)

<table>
<thead>
<tr>
<th>Cytokines:</th>
<th>Chemokines:</th>
<th>Cell surface molecules:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ (A, B, C, D)</td>
<td>MCP-5 analog</td>
<td>CCR5</td>
</tr>
<tr>
<td>IFN-α (A, B)</td>
<td>MIP-1α. (A, B, C, D)</td>
<td>CD3</td>
</tr>
<tr>
<td>IFN-β.</td>
<td>MIP-1β. (A, B, C)</td>
<td>CD4 (C)</td>
</tr>
<tr>
<td>IL-1α. (A, B, C)</td>
<td>RANTES. (A, B)</td>
<td>CD8alpha (C)</td>
</tr>
<tr>
<td>IL-1β. (A, B)</td>
<td>IP-10. (A, B)</td>
<td>CD11b</td>
</tr>
<tr>
<td>IL-2. (A, B, C, D)</td>
<td>GRO/IL-8. (A, C, D)</td>
<td>CD14</td>
</tr>
<tr>
<td>IL-4. (A, B, C, D)</td>
<td>MIP-2/IL-8. (A, C)</td>
<td>CD16</td>
</tr>
<tr>
<td>IL-5</td>
<td>MCP-1/JE. (A, C)</td>
<td>CD18</td>
</tr>
<tr>
<td>IL-6. (A, B, C)</td>
<td></td>
<td>CD25</td>
</tr>
<tr>
<td>IL-9</td>
<td></td>
<td>CD45/B220</td>
</tr>
<tr>
<td>IL-10. (A, B, C)</td>
<td></td>
<td>CD62L (L-selectin)</td>
</tr>
<tr>
<td>IL-12p40.</td>
<td></td>
<td>CD74(MHC II)</td>
</tr>
<tr>
<td>IL-12-p35.</td>
<td></td>
<td>CD83(HB15)</td>
</tr>
<tr>
<td>IL-13</td>
<td></td>
<td>CD86(B7-2)</td>
</tr>
<tr>
<td>IL-18</td>
<td></td>
<td>Ly-6</td>
</tr>
<tr>
<td>TNFα. (A, B, C, D)</td>
<td></td>
<td>MHC I</td>
</tr>
<tr>
<td>TNFβ.</td>
<td>IRF-2</td>
<td>MHC II A</td>
</tr>
<tr>
<td>TGFβ1.</td>
<td>IRF-8 (ICSBP)</td>
<td>MHC II E</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Cox-2</td>
<td>TLR-2</td>
</tr>
<tr>
<td></td>
<td>Hsp70</td>
<td>β-2 microglobulin</td>
</tr>
<tr>
<td></td>
<td>Mx1 and Mx2</td>
<td></td>
</tr>
</tbody>
</table>

* A: recombinant protein; B: Polyclonal antibody; C: Monoclonal antibody; D: ELISA

2/08
<table>
<thead>
<tr>
<th>Year</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>1937</td>
<td>Endemic typhus</td>
</tr>
<tr>
<td>1939</td>
<td>Polio (1, 2 & 3)</td>
</tr>
<tr>
<td>1940</td>
<td>M. bovis</td>
</tr>
<tr>
<td>1940</td>
<td>C. diphtheriae</td>
</tr>
<tr>
<td>1942</td>
<td>Epidemic typhus</td>
</tr>
<tr>
<td>1944</td>
<td>Filariasis</td>
</tr>
<tr>
<td>1967</td>
<td>R. rickettsii</td>
</tr>
<tr>
<td>1970</td>
<td>VEE</td>
</tr>
<tr>
<td>1971</td>
<td>RSV</td>
</tr>
<tr>
<td>1981</td>
<td>Parainfluenza (1, 2 & 3)</td>
</tr>
<tr>
<td>1984</td>
<td>Adenoviruses (2, 4, 5, 7, 8)</td>
</tr>
<tr>
<td>1985</td>
<td>HSV-1</td>
</tr>
<tr>
<td>1987</td>
<td>Lyme disease</td>
</tr>
<tr>
<td>1987</td>
<td>Influenza (A & B)</td>
</tr>
<tr>
<td>1992</td>
<td>Measles</td>
</tr>
<tr>
<td>1993</td>
<td>Venezuelan hemorrhagic fever</td>
</tr>
<tr>
<td>1995</td>
<td>Hantavirus</td>
</tr>
<tr>
<td>2002</td>
<td>Monkeypox</td>
</tr>
<tr>
<td>2004</td>
<td>hMPV</td>
</tr>
<tr>
<td>2006</td>
<td>HSV-2</td>
</tr>
</tbody>
</table>
Important Infectious Diseases in the Cotton Rat

- 1937: Endemic typhus
- 1939: Polio (1, 2 & 3)
- 1940: M. bovis
- 1940: C. diphtheriae
- 1942: Epidemic typhus
- 1944: Filariasis
- 1967: R. rickettsii
- 1970: VEE
- 1971: RSV
- 1981: Parainfluenza (1, 2 & 3)
- 1984: Adenoviruses (2, 4, 5, 7, 8)
- 1985: HSV-1
- 1987: Lyme disease
- 1987: Influenza (A & B)
- 1992: Measles
- 1993: Venezuelan hemorrhagic fever
- 1995: Hantavirus
- 2002: Monkeypox
- 2004: hMPV
- 2006: HSV-2
Cotton Rat Model of Respiratory Viral Diseases

Semi-permissive

(histopathology and output virus proportional to input virus)

Tissue tropism (lungs and nose)

No species adaptation is required

Functional Mx system

- **antiviral** type-I-interferon-inducible proteins
- important component of **innate** antiviral defense in humans
- Mx genes are **defective** in common laboratory strains of **mice**
 - lack of appropriate innate response
- Mx proteins are rapidly induced in infected cotton rats.
RSV
Respiratory Syncytial Virus
RSV in cotton rats:

Peak pulmonary replication: day 4, clearance by day 7

Disease is primarily inflammatory

Only short-term immunity

Most important parallels to human disease:

1. Antibody efficacy: Predicted efficacy and dose of RespiGam® and Synagis® in preventing RSV disease

2. Vaccine-induced immunopathology
LOT 100 TRIAL (1965)

Formulation:
- Formalin-Inactivated (FI-RSV)
- Alum-Precipitated, 100X Concentrated

Results:
- 16-fold higher hospitalization rate in RSV-infected Lot 100 vaccinees than in RSV-infected controls
- Two RSV-infected Lot 100 vaccinees died
- Lung Pathology: Characterized by alveolitis, or cellular infiltrates in alveolar spaces
Alveolitis is the Primary Marker of FI-RSV Vaccine-enhanced Disease in Cotton Rats
Monophosphoryl lipid A (MPL) reverses FI-RSV vaccine-enhanced disease histologic marker

Monophosphoryl lipid A (MPL) reverses FI-RSV vaccine-enhanced disease histologic marker

Boukhvalova et al., Vaccine 2006 24(23):5027-35
Monophosphoryl lipid A (MPL) reverses FI-RSV vaccine-enhanced disease histologic marker

Boukhvalova et al., Vaccine 2006 24(23):5027-35
Monophosphoryl lipid A (MPL) reverses FI-RSV vaccine-enhanced disease histologic marker

Boukhvalova et al., Vaccine 2006 24(23):5027-35
Real-time RT-PCR analysis of RSV replication in vivo
Abortive replication in the re-infection model

Infectious Virus Release
Viral Genome Replication

Effect of Aging on Cotton Rat Responses to RSV

Delayed viral clearance from the lungs of aged cotton rats:

Effect of Aging on Cytokine Responses

Boukhvalova et al., J Infect Dis 2007 195(4):511-8
Effect of Aging on Cytokine Responses

Boukhvalova et al., J Infect Dis 2007 195(4):511-8
Effect of Aging on Cytokine Responses

Boukhvalova et al., J Infect Dis 2007 195(4):511-8
Effect of Aging on Cytokine Responses

hMPV
Human Metapneumovirus
hMPV:

Newly-discovered paramyxovirus (2001)

More severe disease in infants, immunocompromized and elderly

Only short-term immunity

hMPV in cotton rats:

Peak pulmonary replication: day 5, clearance by day 12

Disease is primarily inflammatory

Vaccine-enhanced disease
Vaccine-enhanced disease in FI-hMPV-immunized cotton rats

Day 4 Day 7 Day 10

Primary Infection

Re-infection

FI-hMPV

mock

Yim et al., Vaccine 2007 25(27):5034-40
FI-hMPV vaccine-enhancement is associated with Th2/Th1 imbalance

Yim et al., *Vaccine* 2007 25(27):5034-40
Influenza
Influenza in cotton rats:

Infection is possible using **unadapted** influenza viruses.

Replication is rapid, inflammatory response lingers after viral clearance from the lungs.

Rapid activation of antiviral Mx response.

Abundant pulmonary cytokine response.

Heterosubtypic immunity.
Replication of influenza viruses in cotton rats

<table>
<thead>
<tr>
<th>Type (Subtype)</th>
<th>Adaptation</th>
<th>Strain</th>
<th>Lung Titer<sup>a</sup></th>
<th>Nose Titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>B/HK/73</td>
<td>3.6</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B/Sichuan/379/99</td>
<td>5.2</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B/HK/330/01</td>
<td>5.5</td>
<td>5.2</td>
</tr>
<tr>
<td>A (H1N1)</td>
<td>Mouse Tissue culture</td>
<td>A/PR/8/34</td>
<td>N/D</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/PR/8/34</td>
<td>6.3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/Malaya/302/54</td>
<td>5.2</td>
<td>6.3</td>
</tr>
<tr>
<td>A (H3N2)</td>
<td></td>
<td>X-31</td>
<td>4.6</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/Wuhan/359/95</td>
<td>3.3</td>
<td>6.4</td>
</tr>
</tbody>
</table>

^a Log₁₀ TCID₅₀/g

Replication of influenza viruses in cotton rats

<table>
<thead>
<tr>
<th>Type (Subtype)</th>
<th>Adaptation</th>
<th>Strain</th>
<th>Lung Titer(^a)</th>
<th>Nose Titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>B/HK/73</td>
<td>3.6</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B/Sichuan/379/99</td>
<td>5.2</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B/HK/330/01</td>
<td>5.5</td>
<td>5.2</td>
</tr>
<tr>
<td>A (H1N1)</td>
<td>Mouse</td>
<td>A/PR/8/34</td>
<td>N/D</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>Tissue</td>
<td>A/PR/8/34</td>
<td>6.3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>culture</td>
<td>A/Malaya/302/54</td>
<td>5.2</td>
<td>6.3</td>
</tr>
<tr>
<td>A (H3N2)</td>
<td></td>
<td>X-31</td>
<td>4.6</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/Wuhan/359/95</td>
<td>3.3</td>
<td>6.4</td>
</tr>
</tbody>
</table>

\(^a\) Log\(_{10}\) TCID\(_{50}\)/g

Viral replication and clinical signs of influenza A infection in cotton rats

Induction of Mx response during influenza A infection in cotton rats

Pathology of influenza A infection in the cotton rat model

Heterosubtypic immunity to influenza in the cotton rat model

Viral Titer, Log₁₀ TCID₅₀/g

Nose
- **Wuhan/Wuhan**
- **None/Wuhan**
- **PR8/Wuhan**

Lung
- **Wuhan/Wuhan**
- **None/Wuhan**
- **PR8/Wuhan**

Time post-infection:
- day 1
- day 2
- day 4
- day 7

Heterosubtypic immunity to influenza in the cotton rat model

Advantages of the Cotton Rat Model

- Highly permissive to infection with unadapted human respiratory viruses, including unadapted influenza strains
- Carries functional Mx system
- Displays strong effect of aging on antiviral responses
- Reflects human FI-RSV vaccine-enhanced disease and predicts efficacy and safety of candidate vaccines
- Allows analysis into the mechanisms of vaccine-enhancement and adjuvant action.
- Predicts vaccine-enhanced disease for FI-hMPV
- Displays heterosubtypic immunity to influenza
Virion Systems, Inc. University of Maryland, Baltimore, School of Medicine

Kevin Yim Stefanie Vogel
Katherine Kuhn
Patrick Hemming
Layla Soroush
Dolores Harrigan
Tim Straight
Maryna Eichelberger

Gregory Prince
Jorge Blanco

David Porter