ANIMAL CELL SUBSTRATES

INTRODUCTION
Animal Cell Substrates for Biological Products

- Recurring focus of attention / anxieties for the past 50 years

- Recurring inter-linked issues
 - Safety
 - Transmissible agent (e.g., viruses)
 - Infectious disease
 - Cancer
 - Other diseases
 - Transmissible elements (e.g., oncogenes)
 - Cancer
 - Other diseases (e.g., encephalopathies)
 - Acceptability
 - State of knowledge / understanding of risks (e.g., cancer)
 - Ability to deal with identifiable risks
 - Ability to characterize cell extensively
 - Willingness to take calculated risks
ANIMAL CELL SUBSTRATES

DEFINITIONS
ANIMAL CELL SUBSTRATES

Phenotypic Characteristics of Cells Grown *in vitro*

- **Life potential**
 - Finite
 - Infinite

- **Tumorigenic potential (assay dependent)**
 - (+)
 - (-)

- **Chromosomal compliment**
 - Diploid
 - Heteroploid
Animal Cell Substrate Classification Scheme

- **Primary cells**
 - Examples: monkey kidney, hamster kidney, & chick embryo fibroblasts

- **Diploid cell lines (human and nonhuman primate)**
 - Finite life
 - Non-tumorigenic
 - Examples: WI-38, MRC-5, FRhL-2

- **Continuous cell lines**
 - Infinite life
 - Heteroploid
 - Tumorigenic (majority)
 - In vitro “transformation” during subculture (animal)
 - Examples: BSC-1, LLC-MK2, MDCK, & BHK-21
 - Transformed *in vitro* by whole virus or viral element(s) (animal and human)
 - Examples: 293, PerC.6
 - Derived from tumor tissue (human and animal)
 - Examples: Namalwa, HeLa, T-24
 - Non-tumorigenic (minority)
 - Example: VERO at passages <200, some rabbit cell lines
ANIMAL CELL SUBSTRATES

HISTORY
Animal Cell Substrates
Decisions & Developments

- 1950s
 - Human cancer cells (HeLa)
 - Primary monkey kidney cells
 - 1954 Armed Forces Epidemiology Board
Mammalian Cell Substrates

Decisions & Developments

- **1960s**
 - Human diploid cells (HDCs)
 - Risk of a theoretical latent oncogenic agent
 - No tests available for a theoretical agent; therefore unable to characterize cells to demonstrate its absence
 - 1967 NIH conference
 - Gradual acceptance of HDCs as substrate for vaccine production
 - First in Europe
 - Eventually in USA and elsewhere
Animal Cell Substrates

Decisions & Developments

- 1970s - Human cancer cells
 - Namalwa - lymphoblastoid cells for IFN
 - Virus (EBV)
 - DNA
 - IFN
 - Not a replicating agent
 - Therapeutic agent vs prophylactic
 - Purification & validation to demonstrate undetectability of EBV and cell DNA
- 1978 NIH conference
Animal Cell Substrates

Decisions & Developments

- 1980s - Animal cancer cells
 - Characteristics
 - High density
 - Rapid growth
 - High expression of product
 - Examples
 - CHO for rDNA
 - Hybridomas for MAbs

- 1984 NIH / FDA conference
 - DNA (10 pg/dose), viruses, transforming proteins

- 1986 WHO Study Group
 - DNA (100 pg/dose), viruses, (transforming proteins)
Animal Cell Substrates
Decisions & Developments

- 1990s – 2000s Cancer Cells
 - Examples of human CCLs for products in development
 - HeLa – HIV vaccines
 - Per.C6 – Influenza and HIV vaccines
 - 293ORF6 – HIV vaccines
 - Examples of other CCLs for products in development or approved
 - MDCK – influenza vaccines
 - Hi-5 – human papillomavirus vaccine (approved)
- 2004 NIAID / WHO / IABS conference
- 2006 WHO Study Group on Animal Cell Substrates
 - Revise WHO Requirements for animal cell substrates
Animal Cell Substrates

Real Risks: Infectious Agents Transmitted to Humans in Biological Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Cell / Tissue</th>
<th>Agent(s)</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polio vaccines</td>
<td>1° MK</td>
<td>SV40</td>
<td>?</td>
</tr>
<tr>
<td>PPF</td>
<td>Human plasma</td>
<td>Hepatitis B</td>
<td>+</td>
</tr>
<tr>
<td>Transplants</td>
<td>Human cornea dura mater</td>
<td>Rabies, Prions</td>
<td>+</td>
</tr>
<tr>
<td>Growth hormone</td>
<td>Human pituitary</td>
<td>Prions</td>
<td>+</td>
</tr>
<tr>
<td>Factors VIII & IX</td>
<td>Human plasma</td>
<td>HIV, Hepatitis A, B, C</td>
<td>+</td>
</tr>
</tbody>
</table>
Continuous Cell Lines

Summary

- Risks associated with CCLs are the same as those identified in 1954
 - Transmissible agents (e.g., viruses)
 - Cellular components (e.g., DNA)
- Scientific knowledge and technical abilities are significantly better than in 1954
- Data are now being generated to answer more specifically questions related to DNA risk
- Prospects are bright for a consensus on the criteria for acceptability of a wide range of CCLs