Advantages & Challenges of Vaccine Development in Insect Cells

Gale Smith, PhD
Novavax, Inc.
September 18, 2007
“Safe Harbor” Statement

Statements made in this presentation that state Novavax's or management's intentions, hopes, beliefs, expectations, or predictions of the future are forward-looking statements. Forward-looking statements include but are not limited to statements regarding usage of cash, product sales, future product development and related clinical trials and future research and development, including FDA approval. Novavax’s actual results could differ materially from those expressed in such forward-looking statements. Such forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the Company, or industry results, to be materially different from those expressed or implied by such forward-looking statements. Such factors include, among other things, the following: general economic and business conditions; ability to enter into future collaborations with industry partners; competition; unexpected changes in technologies and technological advances; ability to obtain rights to technology; ability to obtain and enforce patents; ability to commercialize and manufacture products; ability to establish and maintain commercial-scale manufacturing capabilities; results of clinical studies; progress of research and development activities; business abilities and judgment of personnel; availability of qualified personnel; changes in, or failure to comply with, governmental regulations; the ability to obtain adequate financing in the future through product licensing, co-promotional arrangements, public or private equity financing or otherwise; and other factors referenced herein. Additional information is contained in Novavax's annual report on Form 10K for the year ended December 31, 2006 incorporated herein by reference. Statements made herein should be read in conjunction with Novavax's annual and quarterly reports filed with the SEC. Copies of these filings may be obtained by contacting Novavax at 9920 Belward Campus Drive, Rockville, MD 20850 Tel 240-268-2000 or the SEC at www.sec.gov.
Renaissance in the Development of New and Safer Vaccines

- Expanding US and World markets
 - Increased need for adult vaccines
- New unmet medical needs
 - HIV, bioterrorism, pandemic influenza
- Advances in Immunology
 - Innate immunity
 - Cellular immunity
 - New adjuvants
- Advances in expression systems
 - More complex vaccines: Virus-like Particles (VLPs)
- Advances in biopharmaceutical manufacturing
Baculovirus – Insect Cell Expression System

Brief Overview
Baculoviruses

- dsDNA, circular genome 133,894 bp
- Limited host range - Lepidoptera (butterflies and moths)
- Biological pesticides
 - 8 baculoviruses registered by the EPA
 - No reported human disease, hypersensitive, or allergies
- *Autographa californica* Nuclear Polyhedrosis Virus (AcMNPV)

AcMNPV OB

AcMNPV infected larvae
Insect Cell Lines

- **Sf9 and Hi 5**
 - Acceptable for the manufacture of human biologicals
 - Commercial License
 - Texas A&M – Sf9
 - Boyce Thompson Institute – Hi 5

![Spodoptera frugiperda](image1)

![Trichoplusia ni](image2)

![Ovarian Cells](image3)

![Egg Cells](image4)

![BV infected Sf9 Cells](image5)
Genetic Engineering of Baculovirus

<table>
<thead>
<tr>
<th>Cloning methods</th>
<th>AcMNPV</th>
<th>Kits</th>
<th>rBV (%)</th>
<th>Speed (days)</th>
<th>GMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombination (original)</td>
<td>wt</td>
<td>No</td>
<td>~ 1%</td>
<td>10 – 15</td>
<td>Yes</td>
</tr>
<tr>
<td>Direct Insertion (linear DNA)</td>
<td>modified</td>
<td>Yes</td>
<td>>90%</td>
<td>10 – 15</td>
<td>Yes</td>
</tr>
<tr>
<td>Transposition in E.coli or Sf9</td>
<td>modified</td>
<td>Yes</td>
<td>100%</td>
<td>5 - 10</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Recombinant AcMNPV
- Enveloped nucleocapids
- 60 x 330 nm

Master Seed
- Sf9 Cells
- Serum – free media
- 10⁸ – 10⁹ pfu/ml
- Stored: 5°C or -80°C
Baculovirus – Insect Cell Expression System

➢ Summary
 – Eukaryotic expression system used to express 1,000s of genes
 – Multiple genes can be expressed
 – Competitive yields
 – Correct protein folding
 – Does not replicate in human or mammalian cells
 – No identified allergens
 – Sf9 and Hi 5 cells are non-tumorgenic
 – Only a few insect-vectored viruses (arborviruses) replicate

➢ Major limitation
 – N-glycosylation pathway is different in insects compared to higher eukaryotes
N-glycosylation in Sf9 Insect Cells

- Lack of sialylo and glucosyl transferases
- Lack of the transferases to produce glycoalergens
 - 1,2-xylose and 1,3-fucose in plants and some invertebrates
 - 1,6-fucose in mammalian and Sf9 cells

Mammalian: Complex N-Linked

Insect: Paucimannose
Production of Influenza VLPs in Insect Cells
Why Recombinant Influenza VLP Vaccine

- No eggs
- No pathogenic virus in manufacturing
- Controlled cell culture process
- Safety
 - No Serum
 - No Protein
- Exact genetic match
- SRID potency assay validated for recombinant VLPs
- Improved immunogenicity of flu VLPs without adjuvants
- Speed from strain selection to manufacturing is weeks
Influenza Virus

- Enveloped; segmented, negative stranded RNA virus
- Surface hemagglutinin (HA) and neuraminidase (NA) spike glycoproteins
- Matrix (M1) is the major capsid protein
- Influenza Virions:
 - M1 helical capsid
 - HA and NA spikes in lipid bilayer envelope
 - Pleomorphic
Cloning Strategy to Produce an Influenza Virus-like Particle (VLP) Vaccine

- HA, NA, and M1 genes cloned into Tandem rBV
 - Infection with single cloned rBV – Poisson distribution
 - Mixed infection with multiple rBV – Cells unevenly infected
- Each gene within its own expression cassette
 - Polyhedrin promoter
 - Poly(A) termination signal
Cloning and Expression of Influenza VLPs

RNA Sequence
- HA, NA, M1

DNA Synthesis
- Codon Optimized

Cloned Genes
- HA
- NA
- M1

Influenza Virus
- Plaque Isolate

rBaculovirus

Bacmid DNA

Tandem Vector

Master Virus Seed

VLP Manufacturing

100 nm
Kinetics of Secretion of Influenza (H5N1) VLPs in Sf9 Cells

<table>
<thead>
<tr>
<th>Std</th>
<th>Sf9</th>
<th>20</th>
<th>26</th>
<th>30</th>
<th>44</th>
<th>48</th>
<th>72</th>
<th>hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

Flu BV

HA gp64

p39

M1

p10

Baculovirus VLPs

Hours post infection

NOVAVAX
Sucrose Gradient Purification of Enveloped VLPs

- Buoyant density in sucrose
 - BV = 1.16 – 1.17 g/ml
 - VLPs = 1.14 – 1.15 g/ml

- Sucrose gradient purified VLPs ~ 50% pure

- Novavax has developed chromatographic procedures for the purification of influenza and other enveloped VLPs to >90% pure
Chromatography Purified Influenza A/Indonesia/5/05 (H5N1) VLPs

<table>
<thead>
<tr>
<th>Reference rHA</th>
<th>100L Batch</th>
<th>100 L Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Batch Consistency of A/Indonesia/5/05 (H5N1) VLPs

Table of Band MW, IntOD, and % Purity

<table>
<thead>
<tr>
<th>Band</th>
<th>MW</th>
<th>IntOD</th>
<th>% Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HA</td>
<td>68.4</td>
<td>3.79365</td>
<td>40.64%</td>
</tr>
<tr>
<td>2 NA</td>
<td>54.4</td>
<td>1.83645</td>
<td>19.67%</td>
</tr>
<tr>
<td>3 M1</td>
<td>26.7</td>
<td>3.38801</td>
<td>36.29%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>96.61%</td>
</tr>
<tr>
<td>1 HA</td>
<td>69.2</td>
<td>3.71364</td>
<td>41.52%</td>
</tr>
<tr>
<td>2 NA</td>
<td>54.4</td>
<td>1.74567</td>
<td>19.52%</td>
</tr>
<tr>
<td>3 M1</td>
<td>27</td>
<td>3.37161</td>
<td>37.69%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>98.72%</td>
</tr>
<tr>
<td>1 HA</td>
<td>68.7</td>
<td>5.25887</td>
<td>42.92%</td>
</tr>
<tr>
<td>2 NA</td>
<td>54.4</td>
<td>1.88479</td>
<td>15.38%</td>
</tr>
<tr>
<td>3 M1</td>
<td>27</td>
<td>4.49662</td>
<td>36.70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95.00%</td>
</tr>
</tbody>
</table>
Cryoelectron Microscopy of Pleomorphic VLPs

A/Indo H5N1 VLPs

Influenza virus pleiomorphy characterized by cryoelectron tomography

Audrey Harris*, Giovanni Cardone*, Dennis C. Winkler*, J. Bernard Heymann*, Matthew Brecher†, Judith M. White†, and Alasdair C. Steven**

*Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892 and **Department of Microbiology, University of Virginia, Charlottesville, VA 22908
Pre-clinical Immunogenicity H5N1 and H3N2 Influenza VLPs
Preclinical Influenza VLP Immunogenicity

- Mice and Ferret Challenge Models
 - 6 to 10 animals per group
 - IM or IN
 - Doses 15, 3.0, 0.6, and 0.12 µg HA (SRID)
 - Immunogens:
 - H5N1 and H3N2 VLPs
 - HA subunit
 - Whole inactivated virus (WIV)
 - Immunizations at weeks 0 and 3
HAI Antibody H5N1 A/Indo/5/05 VLP Vaccine IM (Mice)

HAI GMT (Log2)

<table>
<thead>
<tr>
<th>VLP Dose</th>
<th>Week 0</th>
<th>Week 3</th>
<th>Week 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3ug</td>
<td>0/8</td>
<td>2/8</td>
<td>8/8</td>
</tr>
<tr>
<td>0.6ug</td>
<td>0/8</td>
<td>0/8</td>
<td>8/8</td>
</tr>
<tr>
<td>0.12ug</td>
<td>0/8</td>
<td>0/8</td>
<td>8/8</td>
</tr>
</tbody>
</table>

Protective threshold: 5

NOVAVAX
Anti-HA IgG Isotypes*
H3N2 A/Fujian/411/2002 VLP Vaccine IM (Mice)

*Week 5
H5N1 A/Indo VLP Vaccine Cross-strain Protection in Mice

- Cross-strain protection against virus challenge
 - Immunized 0 and 3 weeks
 - Low dose (0.6µg) VLPs
 - No adjuvant
 - Induced protective antibody and T-cell response
Cross-protection of Flu VLP Vaccine in Ferrets

A/Viet Nam/1203/2004 Challenge (10LD_{50})
Phase I/IIa Trial of Influenza H5N1 A/Indo/5/05 VLP Vaccine

- Blinded, dose – ranging
- Safety and Immunogenicity
- No adjuvant
- 230 young adults
- Initiated July 2007
Regulatory Considerations

- No specific FDA guidelines for products derived from the baculovirus – insect cells

- Quality assessment based on most recent recommendations with specific considerations for:

 - Cell banks and Virus seeds: Spiroplasma, adventitious agents (arboviruses)

 - Harvest and purification process: removal of insect cell and baculovirus proteins and cell DNA and baculovirus clearance or inactivation

- Drug Substance and Drug Product: standard physical, biological, and safety tests
Human Vaccines made in Insect Cells

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Type</th>
<th>Product</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical Cancer - Human Papillomavirus Virus (HPV)</td>
<td>VLP non-enveloped</td>
<td>Cervarix™</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Influenza Seasonal Vaccine</td>
<td>rHA subunit</td>
<td>Phase III</td>
<td>Protein Sciences</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>Subunit ex vivo</td>
<td>Phase III</td>
<td>Dendrion</td>
</tr>
<tr>
<td>Non-Hodgkin’s lymphoma</td>
<td>Subunit ex vivo</td>
<td>Phase I/II</td>
<td>Favrille</td>
</tr>
<tr>
<td>Influenza pre-pandemic H5N1</td>
<td>HA-NA-M1 VLP</td>
<td>Phase I/II</td>
<td>Novavax</td>
</tr>
</tbody>
</table>
SUMMARY

Baculovirus – Insect Cell Expression System

- Mature Technology
 - 25 years in development
 - 2007 licensed human product

- Safe
 - No human pathogens
 - Not tumorigenic
 - No reported allergens

- Rapid (weeks)

- Efficient production enveloped VLPs

- Trials of Influenza pre-pandemic influenza VLP vaccine – 2007

- Trials of Influenza trivalent seasonal flu VLP vaccine – 2008