Technologic Devices for Medically Complex Children

Bruce D. Banwart, MD
Pediatric Critical Care
Children’s Mercy Hospital

Introduction

- Advances in pediatric medicine have enabled children to survive life-threatening illnesses (prematurity, anomalies, HIE, TBI)
- 12 million children with special health care needs
- Healthy children with simple, self-limited acute illness are less likely to be hospitalized
- More chronic illnesses with acute exacerbations or consequences of underlying illness
- Knowing how to troubleshoot equipment failures is foundation for providing optimal delivery of care

Devices

- Enterostomy Tubes
- Tracheostomy Tubes
- Chest Tubes
- Central Venous Lines
- Cerebrospinal Fluid Shunts
Enterostomy Tubes

- NG / NJ tubes appropriate in short term <3 months
- Gastrostomy
- Gastrojejunostomy
 - Allows J-feeds and venting stomach
- Jejunostomy

Indications

- Failure to Thrive
- High Risk of Aspiration
- Oral Motor Feeding Problems
- Mechanical esophago-pharyngeal obstruction
 - Oclusion, Stricture, Atresia
- Altered Absorption or Metabolism
 - Requires continuous feeds
- Unpalatable Diets or Medications
 - Metabolic diets
 - HIV medications
- Severe Gastroesophageal Reflux

Placement

- Surgically
 - Laparotomy or Laparoscopy
 - +/- Fundoplication
 - Enterostomy tube may worsen GERD
- Endoscopic
- Radiographic
 - Guided placement of tube into jejunum
- Questions about tube before mature stoma should be directed to placing service
- Replaced by low profile button at 2-4 months
- Revisions required in 6% of patients
- GJ Tubes have higher risk of needing revised
Placement

- Placed for 8 weeks to allow track to heal and verify the stomach is adhered to abdominal wall.
- Removed in surgery clinic 8 weeks post-op to low profile tube
- Needs to be secured so tube does not migrate inward obstructing flow of feeds
- Small roll of gauze is placed next to tube to keep it perpendicular to the skin and secured with a flexitract

Low Profile Buttons
Microvasive Bard Gastrostomy
- Positives: Secure, Low Maintenance (no balloon), Less Granulation Tissue, Only changed if malfunctioning
- Negatives: No Lock for Continuous feeds, painful to change, must be done by surgery APNs

Gastrojejunostomy Tube

Major Complications
- May be more difficult to recognize in a neurologically impaired population
- Surgical (19.9%) > Endoscopic (9.4%) > Radiologic (5.9%)
- Dislodgement before maturation
 - Before 4 weeks
 - Likely requires repeat procedure
 - Peritonitis: separation of stomach from abdominal wall
 - After 8 weeks, parents can insert foley until location determined radiologically
More Major Complications

- Intraop aspiration
- GI Bleeding
- Peritonitis
- Severe Wound Infection / Sepsis
- Intussusception
- Fistula – gastrocolocutaneous
 - Diarrhea “like formula”
 - Aspiration of fecal material
- Pneumoperitoneum – expected but can mask underlying pathology

Infections

- vs. Irritant Dermatitis
 - Tape Sensitivity, Leakage
 - Keep area dry and use barrier agents
 - Stomahesive Powder
- 20% w/ infection
- Localized – cleaning, local antibacterial treatment and oral antibiotics
- Cellulitis – systemic antibiotics
 - Staph / Strep = 1st generation cephalosporin
 - ?? MRSA
 - Fungal = topical clotrimazole
- Necrotizing Fasciitis – surgical and infectious emergency
Granulation Tissue

- Most common problem
- Friable, Red and Bleeds Easily
- Can cause leakage, irritation, pain
- Confused with gastric prolapse

Warm Compresses

Silver Nitrate Sticks once a day until gone

Triamcinolone Cream in conjunction with silver nitrate for large ones
Minors Complications

- Dislodgement after Tract Maturation
 - Stoma may close within hours to days
 - Gently insert correct sized foley or spare gastrostomy tube
 - Aspirate gastric contents / insert 10-15 ml of air and listen
 - No radiographic study needed if uncomplicated

- Blockage
 - Duodenum by balloon
 - Warm water, Carbonated Drinks, Pancreatic Enzymes
 - No stylet or other device

More Minor Complications

- Leakage
 - From tube? Or Around Tube
 - Excess mobility w/ leakage is difficult to treat
 - Air Drying, Barrier Agents, Sucralfate Powder, Acid reducing agent, Temporary GJ tube or NPO
 - Removal of Tube for days to weeks to allow stoma to shrink

- Buried Bumper Syndrome
 - Excess Traction leads Internal Bumper to Erode through stomach wall with re-epithelialization covering
 - Rotate tube up to 4x’s / day
 - Abdominal pain with feeds, resistance to flow, inability to rotate tube
 - Requires removal and replacement
Tracheostomy Tubes

- **Indications**
 - Upper Airway Obstruction
 - Congenital or acquired
 - Unable to protect airway
 - Excess secretions
 - Long-term mechanical ventilation
 - Chronic lung disease
 - Traumatic Brain Injury

- **Important Characteristics**
 - Size and dimensions
 - Length
 - Inner diameter
 - 2.5mm to 10mm
 - Same as ET tube
 - Imprinted on flange
 - Outer diameter
 - Varies considerably among manufacturers
 - May need to "downsize" due to different O.D.
 - Cuffed or uncuffed
 - Needs to be deflated before a change
 - Even infants may have cuffed tube
 - Bivona – fill with water or saline
 - Inner cannula
 - For precarious airways
 - Removed for cleaning while outer cannula remains in place
 - Must be in place for assisted ventilation
 - 7 Fenestration
 - Use to phonate
Optimal Size and Shape

- Adequate Diameter to Prevent Airflow Restriction
- Prevents aspiration
- Allows vocalization
- Does not exert pressure on mucosa

Tracheostomy Sizes

<table>
<thead>
<tr>
<th></th>
<th>Slavy*</th>
<th>Holinger*</th>
<th>Parson*</th>
<th>Brown*</th>
<th>Serdart*</th>
<th>ET**</th>
<th>Section Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature</td>
<td>6F</td>
<td>6F</td>
<td>3O</td>
<td>3F</td>
<td>—</td>
<td>3.5F</td>
<td>5F (bronch)</td>
</tr>
<tr>
<td>Newborn</td>
<td>6F</td>
<td>6F</td>
<td>3F</td>
<td>3F</td>
<td>3.5F</td>
<td>3F</td>
<td>5F (bronch)</td>
</tr>
<tr>
<td>Newborn</td>
<td>4F-5F</td>
<td>4F-5F</td>
<td>3F</td>
<td>3F</td>
<td>3.5F</td>
<td>3F</td>
<td>5F (bronch)</td>
</tr>
<tr>
<td>6-12 mo</td>
<td>3-3.5F</td>
<td>3.5-4F</td>
<td>3.5-4F</td>
<td>3.5-4F</td>
<td>3.5-4F</td>
<td>3.5F</td>
<td>5F (bronch)</td>
</tr>
<tr>
<td>13 mo-2 yr</td>
<td>2F</td>
<td>2.5-3F</td>
<td>3.5-4F</td>
<td>3.5-4F</td>
<td>3.5-4F</td>
<td>3F</td>
<td>5F (bronch)</td>
</tr>
<tr>
<td>3-4 yr</td>
<td>2F</td>
<td>3F-4F</td>
<td>4F</td>
<td>4F</td>
<td>4F</td>
<td>3F</td>
<td>5F (bronch)</td>
</tr>
<tr>
<td>5-12 yr</td>
<td>4F</td>
<td>5F-6F</td>
<td>6F-7F</td>
<td>6F-7F</td>
<td>6F-7F</td>
<td>5F</td>
<td>5F (bronch)</td>
</tr>
<tr>
<td>13-15 yr</td>
<td>4F</td>
<td>5F-6F</td>
<td>6F-7F</td>
<td>6F-7F</td>
<td>6F-7F</td>
<td>5F</td>
<td>5F (bronch)</td>
</tr>
</tbody>
</table>

NOTE: Tracheostomy tubes in infants and young children are usually secured because the airway tends to slide with the underlying tracheostomy tube.

* Based on internal diameter in millimeters.

** For reference, sizes with alternate lengths.

Maintenance
- Change tube weekly
- Need back up tube
- Suction prn
 - Measured depth
- Chain
 - Once a week changes
 - Clean 1-2x/d with alcohol or soap/H2O
- Ties
 - Changes 1-2x’s/d
 - Redness from residual soap

Heat-Moisture Exchanger

Standards Hospital Care
- 24 hour 1:1 care from trained provider
- Frequent RT care and input
- Attention to clearance of secretions
- Humidification
- Available trachs of same size and one size smaller
- Cuffed tubes should be very apparent
Complieations

- Most common
 - Accidental decannulation
 - Obstruction
 - Respiratory distress considered to have obstruction or dislodgement until proven o/w
 - Emergent tx – rarely encountered by physician
- False passage
 - Do not be falsely reassured by tracheostomy tube entering stoma
- Pneumothorax / mediastinum

Infection

- Candidiasis – nystatin powder
- Peritracheal cellulitis
 - Oral antibiotics and local wound care
 - Leads to mediastinitis if untreated
- Lower airway infection
 - Colonized with Staph aureus, Pseudomonas, Candida
 - Normal secretions are clear to white
 - Abnormal secretions are thick, yellow, green, brown or bloody
 - Positive tracheal aspirate, change in respiratory status, fever ↑38°C – start antibiotics
 - Tracheal aspirate is not beneficial in diagnosing viral infections
 - Need nasal aspirate for RSV or influenza

Bleeding

- Inadequate humidification
 - Dry and friable mucosa
 - Ensure heat-moisture exchanger is being used consistently
- Suction trauma
- Granulation tissue
 - Tip of tube or at the cuff
 - Stoma – use silver nitrate
- Erosion into innominate artery
 - Tube should be kept in place – only way to ensure adequate airway
 - Try inflating cuff to tamponade vessel
Skin Breakdown

Emergent Change
- Best performed by two people
 - One secures patient, deflates cuff
 - Other removes and replaces
- Supplies readily available
 - Replacement cannula
 - ETT of smaller size
 - Lubricant
 - Securing Tape or Ties
 - Suction, O2
- Supine with neck extended
- Gentle pressure and arc-like motion
Unable to pass?
- Insert tracheostomy tube ½ size smaller
- Insert endotracheal tube ½ size smaller
 - Careful not to right mainstem
 - Dilate stoma w/ successively larger ETT
- Cover stoma and BVM using upper airway
 - Oral intubation may be exceptionally difficult
 - Especially with UAO
 - NMB should be used with caution

Preparation for Home
- Good training of 2 adult care givers
- Safety
- Cleanliness
- Mortality rate of children with tracheostomy – 11-40%.
- Mortality from complication is rare

Chest Tubes
Maintenance

- ?? Antibiotics
 - No study to show decreased incidence of infxn’s
- Suction to 20 cm H2O
- X-ray
 - Obtain 4 hours after making changes
- Never clamp the tube
- Water seal = off suction

Chest Tubes: Removal

- Removal
 - Indication for placement is gone
 - Minimal pleural drainage - <2ml/kg/d
 - No air leak
 - chest X-ray/assessments confirm re-expansion
- Pre-medicate for pain
- Breathe in & hum out (have pt practice)
- Chest Tube is quickly removed
- Occlusive dressing applied over insertion site
- Pleura seals itself off
- Chest wound heals within a week

Central Venous Lines

- Types
 - External partially implanted / tunneled
 - Broviac, Hickman
 - Groshong – Valve on distal tip prevents back-bleeding; No heparin
 - Totally implanted w/ SubQ port
 - Portacath, Mediport, Infusaport
 - Percutaneously inserted
 - PICC, CVL
- Indications
 - Intermittent infusions
 - Chemotherapy
 - Chronic Transfusions
 - Frequent Blood Draws
 - TPN
Thrombosis

- Occurs with all CVCs
- Symptomatic 4.6-9%
- Involves
 - Only catheter,
 - Insertion vessel,
 - Extension
- Pulmonary embolus
 - Asymptomatic 57%

Infection

- Exit site
 - Induration, tenderness, erythema, +/- purulent drainage
- Subcutaneous Tunnel
- Sepsis – 4-9%
- Risk factors
 - Frequency of accessing line, 1st month of placement, after 24 months of use, thrombosis or fibrin sheath
 - No difference in risk for different dressing
- Organisms
 - Skin flora
 - Immunocompromised – GNR and Yeast
- Treatment
 - GPC – treat through then antibiotic lock w/ vanc and urokinase
 - GNR or yeast – remove

Do you have time for a 15 second alcohol scrub?

These caps were coated with "microbial" powder that is visible under a black light. Notice the difference in amount of contaminant on the port that had been scrubbed for 15 seconds.

IT COUNTS!
Reduce Infections
- “Scrub the hub”
 - No consensus on time or agent
- Decrease the number of entries
 - Use Peripheral IV if possible
 - Coordinate blood draws
- Adequate dressing changes
 - Transparent 7 days unless soiled or loose
 - Gauze every 48 hrs
 - Date is on dressing – Check it
- Remove the line ASAP

Malfunction
- Total occlusion, doesn’t infuse, doesn’t draw, intermittently nonfunctional
- Trendelenburg positioning, raise the arm, hydrate, cough, valsala
- Thrombolytic agents
 - Urokinase 200 to 5000 U for 30 minutes
 - tPA 0.5-1 ml for 2 hours
- 70% ethanol for waxy buildup from TPN/lipids
- 0.1 normal hydrochloric acid for Ca++ deposits
- Catheter breaks and leaks
 - Catheter specific repair kits

Other Complications
- Dislodgement – replace
 - Externalized – dacron cuff is visualized, mobility of catheter inside tunnel, fresh blood at site, unable to aspirate blood
 - Internalized – significant chest trauma, expanding and painful subcutaneous hematoma
- Migration – obtain radiograph
 - Dysrhythmia, pneumothorax, SVC syndrome, cardiac tamponade
- Fractures / breaks
- Non-infectious phlebitis
- Air embolism
 - Sudden onset of ↑ d rr, ↑ d HR, ↓ d BP and LOC
 - O2 and left side Trendelenburg
 - More likely with insertion
 - Keep catheter circuit closed at all time
PICC

- Complications up to 40%
- Occlusion and Infection most common
- External breaks, shoulder pain, phlebitis w/o infxn, exit site irritation
- Non-central (vs. central)
 - Failed sooner (11.4 vs 16.6 days)
 - Fewer patients complete therapy (69 vs 73%)

Cerebrospinal Fluid Shunts

- 0.5 ml/kg/hr of CSF produced
- Proximal site
 - Lateral ventricles
 - 3rd or 4th ventricles
 - Cyst: intracranial or spinal
- Distal site
 - Peritoneal
 - Right atrium
 - Pleural space
Shunt parts
- Proximal catheter
 - Exits CNS via burr hole
- One way valve
 - Unidirectional flow
 - May incorporate reservoir for sampling / meds
 - Antishiphon device prevents excessive run-off
 - On-off valves
 - Externally programmable
- Distal catheter
 - Tunneled under skin to destination
 - Extra length to allow growth

Malfunction
- Complication of 30-40% of all shunts
- 71% of patients have malfunction in lifetime
- HA, N/V, Irritability, ↑ d sz’s, neck pain, back pain, blurred vision
- Bulging fontanelle, separating sutures, papilledema, sun-setting, ALOC
- 85% of CT’s are abnormal from baseline
 - Comparing to prior CT is invaluable
 - Caution! Last CT may have been taken when shunt was malfunctioning
- 15% are disconnections seen on plainfilms

Malfunction
- Onset of symptoms to diagnosis was 11.5 days
- Vomiting, lack of fever and parental suspicion are the most sensitive clinical features
- Parents are as accurate as physicians in diagnosing malfunction before diagnostic testing
- “Pumping” shunt reservoirs
 - PPV= 21%
 - NPV = 78% (22% can have obstruction w/ normal “pump”)
 - Frequent pumping can cause entrapment of choroid plexus in proximal tubing
Infection

- 2-30% of shunts - incidence declining over time
- Risk highest in infants and post-op period
 - 50% in 1st 2 weeks, 80% in 1st 2 mos, 90% in 1st 4 mos
- 50% of infected shunts are also malfunctioning
- Common pathogens in post-op period up to 9 months
 - Staph epi and aureus
 - 6 – 20% GNR
- Late shunt infxn’s
 - Pneumococcus, H. flu

Infection

- Vague and Nonspecific signs / symptoms
 - Fever, irritability, feeding problems, N/V, lethargy, HA,
 - Signs of meningeal irritation are often absent
- Head CT and Shunt Series
- Tap the shunt
 - WBC of 500/mm3 can be nl
 - 17% of patients may have normal gram stain, cell count and chemistries
- Empiric therapy
 - Vanc and 3rd generation cephalosporin
- Removal of shunt
 - w/ systemic antibiotics
 - High probability of resolving infection

Other Complications

- Overdrainage
 - Lead to subdural hematomas or effusions
 - Need to increase resistance of valve
- Subgaleal fluid collection
 - In immediate post op period - do not drain
 - New fluid collection means malfunction – pathway of least resistance
- Inguinal hernia
 - Increased abdominal fluid converts “potential” to recognizable
 - Perforation of intra-abdominal organs or diaphragm
- Intractable hiccup
- Intussusception
- Volvulus around catheter
Discharge Instruction for Technology Assisted Child

- Help family integrate into community
- Medical summary information
- Go-bags
- Written emergency care plans
- Notify community EMS and local utility companies of their residence

References

Resources

- ENT NP
 - Gail Ezell, RN, MSN, CPNP
- General Surgery NP
 - Erin Erkmann, RN, MSN, BC, FNP
- Pediatric Infectious Diseases
 - Robyn Livingston, MD
- Wound Care
 - Carol Hafeman, RN, MA, ET